CLASSIFICATION

CONFIDENTIAL

CONFIDENTIAL

CENTRAL INTELLIGENCE AGENCY INFORMATION FROM

FOREIGN DOCUMENTS OR RADIO BROADCASTS

REPORT CD NO.

.50X1-HUM

COUNTRY

SUBJECT

USSR

DATE OF

INFORMATION

DATE DIGT. 2

1949

Aug 1950

Scientific - Physics, nonlinear mechanics.

HOW **PUBLISHED**

Book

WHERE

DATE

PUBLISHED

Moscow

1949

PUBLISHED LANGUAGE

Russian

NO. OF PAGES

SUPPLEMENT TO REPORT NO.

THIS IS UNEVALUATED INFORMATION

SOURCE

Metody Lyapunova i Puankare in Teorii Nelineynykh Kolebaniy, in the series, Contemporary Problems of Mechanics, Ogiz, (LC No Q A935 .M34).

TABLE OF CONTENTS FOR "LYAPUNOV (LIAPOUNOFF) AND POINCARE'S METHODS IN THE THEORY OF NONLINEAR OFCILLATIONS"

I. G. Malkin

Page

TABLE OF CONTENTS

			_		
In	trodu	ction	*	8	
ı.	Poi	ncare's General Theory of Periodic Solutions			
	1.	Concept of Poincare's Method. Small Parameters		11	
	2.	Conditions Governing the Existence of Periodic Solutions. Poincare's Theorem		13	
	3,	The Case Where the Functional Determinant of the psi-Functions Vi Reduce to Zero.		15	
	4.	The Case Where the Differential Equations of Motion do not Explicitly Contain Time t		25	
		The Difficulties that Arise during Practical Applications of Poincare's Method, and the Limitations of Problems Connected with Them		30	•
II	. Osc	illations of Quasilinear Systems			
	6.	Oscillations of a Nonautonomic System with One Degree of Freedom Far from Resonance		35	
	7.	Close of Resonance		38	
	, 8.	Resonance of the n-th Kind		51	
		· · · · · · · · · · · · · · · · · · ·			

CONFIDENTIAL

			. Cl.A	SSIFICAT	ION	CONFIDENTIAL	<u> </u>			_		_
STATE	X	NAVY	 	NSRB		DISTRIBUTION	<u> </u>	<u> </u>	ļ	↓_	 	_
ARMY	X	AIR		FBI		<u> </u>	<u> </u>	<u>_</u>				

٦

CONFIDENTIAL

CONFIDENTIAL

50X1-HUM

		<u> </u>	age
	9.	Oscillations of a Nonautonomic Quasilinear System with Any Number of Degrees of Freedom Far from Resonance	55
	10.	Close to Resonance	59
	11.	Quasilinear Autonomic Systems with One Degree of Freedom	67
	12.	The Phase Plane for a Certain System. Limit Cycles. Auto-oscillations (Self-Induced)	79
	13.	Oscillations of a Quasilinear Autonomic System with Any Number of Degrees of Freedom.	90
	14.	The Defects of a Quasilinear Treatment of Physical Problems	98
III.	Stab	ility of Periodic Motions	
	15.	Setting up of the Problem. Equations in Variation	100
	16.	Linear Equations with Periodic Coefficients. The Characteristic Equation	104
	17.	The Analytic Form of the Solutions	108
	18.	Lyapunov's Theorem Concerning the Roots of the Characteristic Equations of Conjugate Systems	119
	19.	Reduction of Equations with Periodic Coefficients to Equations with Constant Coefficients	122
	20.	Lyapunov's Theorem on the Stability of Periodic Motions	128
	21.	Andronov and Witt's Theorem on the Stability of Periodic Motions of Autonomic Systems	136
	22.	Approximate Calculation of the Characteristic Indices. Poincare's Form of the Characteristic Equation	137
	23.	Criteria of Stability	142
	24.	Stability of Oscillations Studied in This Chapter	145
IV.	Lya	punov's Theory of Periodic Solutions	
	25.	Lyapunov's Systems	148
	26.	Periodic Solutions of Lyapunov's System	154
	27.	A Practical Method for the Computation of the Periodic Solutions of Lyaponov's Systems	159
	28.	Certain Properties of the Periodic Solutions of Lyapunov's Systems	166
	20	Concluding Remarks	170

- 2 -

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

50X1-HUM

			rage
۲.	Osci.	llations of Systems with One Degree of Freedom Are Close to Lyapunov's System	
	30.	Generating Solutions	175
	31.	Variational Equations of a Generating System	177
	32.	Conditions Governing the Periodic Solution $x^{n}(t)$, $y^{n}(t)$	181
	33.	A Practical Method for the Calculation of the Periodic Solution $x^{n}(t)$, $y^{n}(t)$	185
	34.	The Periodic Solution $x^{(0)}(t)$, $y^{(0)}(t)$. Resonance and Nonresonance Cases	193
	35 •	Oscillations Close to Resonance	195.
	36.	A Practical Method for the Calculation of the Resonance Solution	201
	37.	The Stability of Periodic Solutions in 36	204
	ვგ.	An Example of Application of the Preceding Method	207
ı.	Osci Whic	llations of Systems with Many Degrees of Freedom	
		The Generating Solutions	219
	40.	The Periodic Solutions $x_{S}^{(o)}(t)$	222
	41.	The Periodic Solutions for Resonance	224
	42.	The Periodic Solution $x_{g}^{(n)}(t)$. Its Existence	232
	43.	a deviction of the Periodic Solution	237
Li	terat	ure	244

- E N D -

- 3 -CONFIDENTIAL

CONFIDENTIAL